Η θεωρία των αλγορίθμων έχει μεγάλη παράδοση και η ηλικία μερικών αλγορίθμων αριθμεί χιλιάδες χρόνια, όπως για παράδειγμα ο αλγόριθμος του Ευκλείδη για την εύρεση του μέγιστου κοινού διαιρέτη δύο αριθμών ή το λεγόμενο κόσκινο του Ερατοσθένη για την εύρεση των πρώτων αριθμών από 1 ως n. Σήμερα το πεδίο της Θεωρίας Αλγορίθμων είναι ένα ιδιαίτερα ευρύ και πλούσιο πεδίο. Πληθώρα συγγραμμάτων έχει εμφανισθεί στη βιβλιογραφία, ενώ συνεχίζεται η περαιτέρω εμβάθυνση σε νέα σύγχρονα προβλήματα. Οι περισσότεροι από τους αλγορίθμους που συνήθως εξετάζονται στα σχετικά βιβλία έχουν προταθεί τα τελευταία 25 χρόνια, όση περίπου είναι και η ηλικία της Πληροφορικής ως μίας νέας αυθύπαρκτης επιστήμης.
Ο όρος αλγόριθμος χρησιμοποιείται για να δηλώσει μεθόδους που εφαρμόζονται για την επίλυση προβλημάτων.
Ωστόσο, ένας πιο αυστηρός ορισμός της έννοιας αυτής είναι ο εξής:
Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος.
Η έννοια του αλγόριθμου δεν συνδέεται αποκλειστικά και μόνο με προβλήματα της Πληροφορικής. Ας θεωρήσουμε, για παράδειγμα, ότι θέλουμε να γευματίσουμε και επομένως πρέπει να εκτελέσουμε τις επόμενες ενέργειες:
- να συγκεντρώσουμε τα υλικά,
- να προετοιμάσουμε τα σκεύη μαγειρικής,
- να παρασκευάσουμε το φαγητό,
- να ετοιμάσουμε τη σαλάτα,
- να στρώσουμε το τραπέζι,
- να γευματίσουμε,
- να καθαρίσουμε το τραπέζι, και
- να πλύνουμε τα πιάτα και τα κουζινικά.
Είναι ευνόητο ότι η προηγούμενη αλληλουχία των ενεργειών οδηγεί στο επιθυμητό αποτέλεσμα. Βέβαια, αυτή η αλληλουχία δεν είναι η μοναδική για την επίτευξη του σκοπού, αφού, για παράδειγμα, μπορούμε πρώτα να ετοιμάσουμε τη σαλάτα και μετά να παρασκευάσουμε το φαγητό, ενώ ακόμη μπορούμε πρώτα να πλύνουμε τα πιάτα και μετά να καθαρίσουμε το τραπέζι. Ωστόσο, το παράδειγμα θέλει να δείξει, ότι η θεώρηση μίας σύνθετης εργασίας με διακριτά βήματα που εκτελούνται διαδοχικά, είναι ένας πολύ χρήσιμος και πρακτικός τρόπος σκέψης για την επίλυση πολλών (αν όχι όλων) προβλημάτων.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου